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Summary

Twin studies have been used to understand the sources of genetic and environmental variation
in body height, body weight and other common human quantitative traits. However, it is rather
unclear whether these two sources of variation could be really separated in practice. Here, we
consider a special study design where phenotype data from married couples and their siblings have
been collected. The marital status gives information about the shared environment, while siblings
give information about both genetic and environmental variation. To dissect sources of variation
and to allow some deviations and pedigree errors in the data, we model such data using a robust
polygenic model with finite genome length assumption. As a summary, we provide the estimates for
age-dependent proportions of total variation which are due to polygenic and environmental effects.
Here, these estimates are provided for body height, weight, systolic blood pressure and total serum
cholesterol measured from subjects of the Indian Migration Study.

1. Introduction

Both genetic and common environmental effects are
important in understanding sources of variation in
quantitative phenotypes (e.g., risk or susceptibility
factors for diseases). However, due to lack of evidence
for the effects of shared environment, family studies
or twin studies may result in over-estimation of
genetic effects (Hopper, 2000). Because of this, an
extended twin design is often preferred (e.g., Stoel
et al., 2006) including phenotypes of the spouses
(Eaves et al., 1999). To account for the shared en-
vironmental effects, a large number of different types
of individuals, their siblings and spouses need to be
studied and information on the number of years spent
together in a specific/shared environment, age up to
which the environment (household) was shared and
phenotypes need to be collected. To summarize, the

estimated division between the genetics and environ-
ment in a population-specific manner, heritability is
usually used as a summary statistics to describe the
proportion of phenotypic variation attributable to
genetic factors.

For quantitative traits, heritability estimation is
often performed using a polygenic model (Henderson,
1984; Lynch and Walsh, 1998; Abney et al., 2000). A
polygenic model (or infinite locus or infinitesimal
model) has been defined (Fisher, 1918) and used by
assuming infinite number of additive unlinked loci
(and infinite genome length), which implies 0.5 as a
constant degree of genetic relationship between full
siblings (Fisher, 1918). However, as is well known, the
length of the genome is finite and specific to different
species. The size of the human genome corresponds
to an equivalent of 85 independent loci (Visscher
et al., 2006). Because of this, Visscher et al. (2006) first
estimated the actual values of relationship coefficients
(entries of the covariance matrix) using a set of
neutral markers and then incorporated these values
into the relationship matrix instead of a fixed 0.5 for
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full siblings. This practice resulted in much higher
heritability estimates, than otherwise expected, based
on collected phenotypes for human height, which is a
typical quantitative trait (see Visscher et al., 2006; Xu,
2006). The obtained heritability of h2B0.8 was close
to estimates from twin studies (Silventoinen et al.,
2003).

For computational easiness, a finite polygenic
model has been proposed as a finite locus approxi-
mation for polygenic model (Thompson and Skolnick,
1977; Du et al., 1999; Du and Hoeschele, 2000).
However, the drawback in such models is that the
heritability estimates are clearly dependent on the
number of loci assumed in the model. Here, we pro-
pose another kind of finite approximation for a
polygenic model, where instead of assuming infinite
genome length, elements of the relationship matrix
corresponding to full siblings (degree of genetic re-
lationship between siblings) are treated as random
variables and estimated simultaneously with the vari-
ance components. Unlike Visscher et al. (2006), we
do not utilize molecular marker information in esti-
mation, but we assume the mean 0.5 and known
standard deviation 0.0384 (cf. Guo, 1996; Visscher
et al. 2006) for the unknown coefficients of genetic
relationship between full siblings. This formulation
provides a more flexible model, which should be
robust for deviations and pedigree errors in the data.

In the Indian Migration Study (IMS) (Lyngdoh
et al., 2006), factory workers from four different parts
of India are examined for various anthropometric
and biochemical measurements apart from other
characteristics. The spouses of the factory workers
and siblings or relatives (in a very few cases when it
was not possible to involve siblings) of both the fac-
tory workers and their spouses are examined. The
main aim of IMS is to study the migration pattern in
India; data on the place of origin, age when the place
of origin was abandoned, age at the time of marriage
and the number of years spent with the spouse in a
common household are collected. It is to be noted that
the siblings or relatives are taken from the place of
origin of the respective factory worker or the spouse.
Hence, IMS provided a unique opportunity to study
the genetic as well as the shared environmental effects
by modelling the dependency between the factory
worker and his sibling/relative, factory worker and his
spouse and the spouse and her sibling/relative (see
Fig. 1).

The present work is motivated by IMS. In the set-
ting of a simple linear mixed model, the effects of
shared environment is modelled as a function of the
number of years the environment was shared. In the
present context, an environment refers to a common
household in either a rural or an urban region.

In section 2, we construct a model describing the
genetic and environmental effects on the phenotypes.

We also define age-dependent proportions of total
variations that are due to polygenic and environ-
mental effects as meaningful summary statistics in
the present context. In section 3, a Bayesian approach
to the estimation of parameters is discussed and, in
section 4, the proposed approach is applied to the
IMS data. Finally, we conclude with the discussion
section.

2. Model

In this section, we construct a model under the setting
of the IMS, where the observation unit of the analysis
is a group of four individuals defined by a male fac-
tory worker, his spouse, his sibling and his spouse’s
sibling. However, the idea presented here is very gen-
eral and can be extended easily to other data types
by appropriately specifying the relationships between
the individuals within the unit of the analysis.

In the sequel, subscripts (1, 2, 3, 4) are used for the
factory worker, his spouse, his sibling and his spouse’s
relative, respectively. Let a 4r1 vector of quantitative
phenotypes corresponding to the factory worker i,
i=1, 2,…, n and related observations be yi=(yi1, yi2,
yi3, yi4)

t, where t denotes the transpose. That is, yi1
corresponds to the measurement of the factory
worker i, yi2 corresponds to the measurement of the
spouse of the factory worker i and so forth. Let
x2=(xi1, xi2, xi3, xi4)

t be the dummy variables or con-
tinuous measurements of the covariates of interest.

Consider a simple linear mixed model

yi=m+bxi+Gi+Ei+ei, (1)

where m is the overall mean and b is the effect of
covariates xi. Further, the additive genetic value or
the polygenic effect vector, Gi=(Gi1, Gi2, Gi3, Gi4)

t,
is assumed to be jointly (multivariate) normally
distributed with the mean vector of zeros and
variance–covariance matrix

Sgi=s2
gAi: (2)

Here, Ai is the additive genetic relationship matrix
(Henderson, 1984), which characterizes the degree to
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Fig. 1. IMS study subjects and their dependency due to
genetic and environmental sharing.
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which related individuals jointly share their genomes
identical-by-descent (IBD) and is given by

Ai=

1 0 ci(1, 3) 0
0 1 0 ci(2, 4)

ci(1, 3) 0 1 0
0 ci(2, 4) 0 1

0
BB@

1
CCA,

and sibling covariances ci( j, jk)s[0, 1], ( j, jk)=(1, 3),
(2, 4) and i=1, 2,…, n are either taken from the
common literature (when there is no inbreeding) as
fixed constants equal to 0.5 or here are assumed to
be independent and identically distributed random
variables with expectation 0.5 and known variance
(0.0384)2. Note that the fixed value 0.5 was originally
derived as an asymptotic limiting value by assuming
infinitely many loci (infinite genome length). Because
all the genomes are of finite length in practice, the
amount of IBD-sharing varies from one pair of sib-
lings to another. Substantial deviations may also be
expected in the presence of pedigree errors in the data.
The detailed motivation for such a covariance struc-
ture is provided in Appendix A.

Further, the environment effect is modelled
through the cumulative effects of the locations
Ei=(Ei1, Ei2, Ei3, Ei4)

t. The effects Ei are assumed to
be drawn randomly from a multivariate normal
distribution with mean vector zero and variance–
covariance matrix Sei, which has elements

Sei( j, jk)=cov (Eij,Eijk)

=s2
eDi,

(3)

where the sum Di=gDl
i( j, jk) is over all the locations

or households shared by j and jk, Di
l( j, jk) is the time

(in years) ( j, jk) spent together at location l for obser-
vation i, and se

2 is the constant multiplier of the dur-
ation matrix Di. Note that if (j, jk) did not share any
location, then Di

l(j, jk)=0 and the corresponding
observations on Ei would be independent. This is the
case for ( j, jk) equal to {(1, 4), (4, 1), (3, 4), (4, 3)}.
Similar identity is expected between observation (yi2,
yi3), but in many Indian families siblings share the
household even after they are married and hence
the dependency between (yi2, yi3) and (yi2, yi3). This
property is lacking from the settings of studies from
developed countries. The rationale behind such a
covariance structure is explained in Appendix A.

Excluding the interaction between G and E and
under the assumption of independent and identical
errors ei, the overall variance–covariance of yi, viz. Si

is then the sum of appropriate covariance terms of the
polygenic effect, shared environmental effects and the
model (1) error variance (sm

2 ).

Si=s2
gAi+Sei+s2

mI=s2
gAi+s2

eDi+s2
mI, (4)

where I is a 4r4 identity matrix. The mean vector of
yi is mi=m+bxi.

In twin studies the heritability is traditionally de-
fined directly from the observed differences between
the measured correlations among monozygotic and
dizygotic twins (Falconer, 1989). Here, we assume no
dominance variance and thus focus on ‘narrow sense ’
heritability (sg

2/sy
2). It is clear from (4) that the

phenotypic variability (sy
2) is modelled as an age-

dependent quantity (sg
2+age se

2+sm
2 ) and this corre-

sponds to the diagonal elements of the Si. Note that
each individual has lived with oneself for the number
of years which are identical to his or her current age.
In the present situation, the phenotypic variation
turns out to be a function of the age when the
phenotype was measured.

For a given age, we define the proportion of the
total variation due to polygenic effect as

vg(age)=
s2
g

s2
g+ age s2

e+s2
m

, (5)

and the proportion of total variation due to environ-
mental effect as

ve(age)=
age s2

e

s2
g+ age s2

e+s2
m

: (6)

It is clear that heritability vg(age) is a decreasing
function of age, but the rate at which it decreases with
age depends on the environment variability se

2. In
general, the heritability estimates of the same trait
assessed in an environment with larger variability
would be lower. Similarly, ve(age) is an increasing
function of age and the rate is dependent on (sg

2+sm
2 ).

Omitting the age-dependency, a rather crude esti-
mator of the heritability can also be given as

~vvg =
ŝ2
y x(s2

e+s2
m)

ŝ2
y

, (7)

~vve =1x ~vvg , (8)

where ŝ2
y is the empirical phenotypic variability, which

can be estimated using sample variance of the ob-
served phenotype data. Note that in expressions (5)
and (6), sg

2 is estimated under the proposed model,
while in expressions (7) and (8), ŝ2

y is estimated exter-
nally from the observed data. The other two variances
(se

2, sm
2 ) are as defined earlier under the proposed

model.

3. Bayesian computation

The likelihood function is simply the product of
n-independent 4-variate normal density

L(h; y, x)=
Yn
i=1

1

(2p)4=2
ffiffiffiffiffiffiffi
jSij

p exp

r x
1

2
(yixmxbxi)

tSx1
i (yixmxbxi)

� �
, (9)
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where h=(m, b, sg
2, se

2, sm
2 ) and |Si| is the determinant

of the matrix Si. A priori independent normal priors
are assigned to m and bs, while mutually independent
Gamma priors are assigned to the inverses of the three
variance components. For discussions of informative
and uninformative priors, see Gelman (2006) and
Dongen (2006). The posterior distribution is pro-
portional to the product of the likelihood and the
prior densities

where k is the number of covariates, N(z ; 0,10000) is
univariate normal density with mean 0 and variance
10 000 evaluated at z and C(z ; 0.01, 0.01) is the
Gamma density with shape and scale parameters
equal to 0.01 evaluated at z. The Gibbs sampler, ap-
plied to the posterior distribution of h, involves
specification of the following full conditional dis-
tributions:

where all the variables are being conditioned on their
most recently sampled values. If sampling from any of
these full conditional distributions is difficult, then
a Metropolis–Hastings step can be used. The samples
from the posterior distribution of h (10) are generated
by using the OpenBUGS 2.2.0 software (Spiegelhalter
et al., 2005; Thomas et al., 2006).

Let (sg
2(l), se

2(l), sm
2(l)), l=1,…, M be the Markov

Chain Monte Carlo (MCMC) samples from the pos-
terior distribution. The sample for the proportions
at MCMC round l, l=l,…, M is

v(l)g (age)=
s2(l)
g

s2(l)
g + age s2(l)

e +s2(l)
m

,

v(l)e (age)=
age s2(l)

e

s2(l)
g + age s2(l)

e +s2(l)
m

:

The posterior median and credible intervals are then
estimated using these samples.

When ci(1, 3) and ci(2,4) are allowed to be ran-
domly distributed according to N(0.5, 0.03842), the

above posterior distribution (10) is multiplied by

Yn
i=1

N(ci(1, 3); 0�5, 0�03842)N(ci(2, 4); 0�5, 0�03842):

The full conditional distributions of ci(1, 3) and ci(2,
4) are

p(ci(1, 3)j:) /N(ci(1, 3); 0�5, 0�03842)Li(h; yi, xi),

p(ci(2, 4)j:) /N(ci(2, 4); 0�5, 0�03842)Li(h; yi, xi),

where

Li(h; yi, xi)=
1

(2p)4=2
ffiffiffiffiffiffiffi
jSij

p exp

r x
1

2
(yixmxbxi)

tSx1
i (yixmxbxi)

� �
:

These unknown factors then get updated at each
iteration. The missing data in y (under the missing at
random assumption) are handled naturally in the
Bayesian computation and they get updated or pre-
dicted at each iteration. The missing data in the
covariates can be handled by introducing a prior dis-
tribution for covariates.

4. Data analyses

The IMS data are analysed here using three different
models : (1) assuming a model yi=m+ei and a general
variance–covariance matrix S for each i and using the
Wishart prior for it, (2) the proposed model
yi=m+bxi+Gi+Ei+ei with 0.5 as the constant de-
gree of genetic relationship, that is, Ci(1, 3) and Ci(2,
4) are equal to 0.5 for all i, and (3) the proposed ro-
bust model yi=m+bxi+Gi+Ei+ei when the degree
of genetic relationship is random and distributed ac-
cording to the normal distribution with mean 0.5 and
variance (0.0384)2. We also estimate the proportions
vg(age) and ve(age).

p(mj:) / N(m; 0, 10000)
Yn
i=1

exp x
1

2
(yixmxbxi)

t Sx1
i (yixmxbxi)

� �
,

p(bjj:) / N(bj; 0, 10000)
Yn
i=1

exp x
1

2
(yixmxbxi)

t Sx1
i (yixmxbxi)

� �
,

p(s2
gj:) / C(1=s2

g; 0�01, 0�01)L(h; y, x),
p(s2

ej:) / C(1=s2
e; 0�01, 0�01)L(h; y, x),

p(s2
mj:) / C(1=s2

m; 0�01, 0�01)L(h; y, x),

p(hjy, x) /L(h; y, x)N(m; 0, 10000)
Yk
j=1

N(bj; 0, 10000)

rC(1=s2
g; 0�01, 0�01)C(1=s2

e; 0�01, 0�01)C(1=s2
m; 0�01, 0�01), (10)
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We analyse 372 (=n) household data each of which
consists of four observations as shown in Figure 1.
For the purpose of illustration, four phenotypes
are analysed, viz. body height, weight, systolic blood
pressure and total serum cholesterol. The covariates
used are age when the phenotypes were measured, sex
(1=man, 0=woman) and location (categorized as
urban and rural). The total number of observations
on the phenotypes is 1488. For cholesterol, 167
observations were missing, while for systolic blood
pressure, four observations were missing. All the
observations were available for height and weight. A
natural question that arises is whether the correlation
between phenotypes of spouses is larger for spouses
that have been together for longer? To check this, a
regression analysis of the phenotype of the factory
worker yi1 on the age when the phenotype was col-
lected, the phenotype of the spouse yi2, the duration
they have lived together Di(1, 2) and the interaction
yi2 �Di(1, 2) gave positive regression coefficients for
the phenotype of the spouse, and the duration they
have lived together. Hence, it may be concluded that
the spouse correlation is larger for spouses that have
been together longer. We also looked at the pheno-
typic variances among those below and above 40 years

of age to see whether phenotypic variances increase
with age and by grouping the pairs of observations,
((yi1, yi2), (yi1, yi3), (yi2, yi4)), according to the number
of years spent in 5-year groups. We noticed that in our
data, the phenotypic variances among those who are
below 40 years of age are smaller than those above
40 years of age. There was a clear increase in the
phenotypic covariations in the initial years of living
together (up to 10 years) and for the later years no
clear pattern was observed. This may indicate a more
general model, where the shared environmental effect
decreases with age (see the Discussion section).

In Appendix B, OpenBUGS code for analysing
the proposed model is given. The model (1) gave an
estimate of S with positive covariance between in-
dividuals 1 and 4. This is not desirable since these
individuals neither are genetically related nor have
a shared environment. Hence, this may indicate a
possible lack of fit for models (2) and (3), which
assume a specific structure of dependency under
random mating (see the Discussion section).

Table 1 gives the posterior median and 95%
credible intervals for three variance components
and for four phenotypes using models (2) and (3)
and Table 2 gives corresponding estimates of the

Table 1. Estimated variance components. Posterior median (95% credible intervals) of three variances
(se

2, environment; sg
2, genetic; sm

2 , error) for various quantitative phenotypes using models with 0.5 as the constant
degree of genetic relationship (2) and when the degree of genetic relationship is random (3). The abbreviation
‘SystBP ’ is used for systolic blood pressure

Phenotype Model se
2 sg

2 sm
2

Height (m) (2) 8E-05 (7E-05, 9E-05) 7E-04 (5E-04, 0.0010) 7E-04 (5E-04, 9E-04)
(3) 8E-05 (7E-05, 9E-05) 7E-04 (5E-04, 0.0010) 7E-04 (5E-04, 9E-04)

Weight (kg) (2) 0.716 (0.372, 1.170) 49.43 (25.13, 71.73) 42.40 (27.60, 58.47)
(3) 0.727 (0.472, 1.212) 48.18 (24.78, 72.56) 41.84 (24.95, 58.13)

SystBP (mmHg) (2) 2.60 (1.76, 3.51) 101.95 (50.81, 156.25) 62.89 (30.61, 97.65)
(3) 2.57 (1.79, 3.56) 101.85 (45.95, 153.84) 64.00 (30.64, 100.78)

Cholesterol (mg/dl) (2) 10.50 (4.98, 16.08) 734.21 (433.08, 1039.17) 379.93 (189.07, 584.79)
(3) 11.53 (7.76, 17.08) 703.23 (376.22, 1068.60) 363.43 (138.29, 575.37)

Table 2. Estimated proportion of the total variation due to polygenic effect (vg(age)) and due to environment
effect (ve(age)) at the age of 30 and crude estimates of these proportions ṽg and ṽe. Posterior median (95%
credible intervals) of the two proportions for various quantitative phenotypes using models with 0.5 as the
constant degree of genetic relationship (2) and when the degree of genetic relationship is random (3). The
abbreviation ‘SystBP ’ is used for systolic blood pressure

Phenotype Model vg(30) ve(30) ṽg ṽe

Height (m) (2) 0.19 (0.14, 0.25) 0.61 (0.56, 0.67) 0.89 (0.86, 0.92) 0.10 (0.08, 0.13)
(3) 0.19 (0.14, 0.25) 0.61 (0.56, 0.67) 0.89 (0.86, 0.91) 0.10 (0.08, 0.13)

Weight (kg) (2) 0.43 (0.23, 0.60) 0.18 (0.095, 0.31) 0.71 (0.60, 0.80) 0.29 (0.19, 0.39)
(3) 0.42 (0.22, 0.59) 0.19 (0.11, 0.32) 0.71 (0.60, 0.82) 0.28 (0.17, 0.39)

SystBP (mmHg) (2) 0.42 (0.21, 0.60) 0.32 (0.21, 0.44) 0.80 (0.70, 0.90) 0.19 (0.09, 0.29)
(3) 0.42 (0.19, 0.59) 0.31 (0.21, 0.44) 0.80 (0.69, 0.90) 0.19 (0.09, 0.30)

Cholesterol (mg/dl) (2) 0.51 (0.31, 0.69) 0.22 (0.10, 0.34) 0.76 (0.64, 0.88) 0.23 (0.11, 0.35)
(3) 0.49 (0.27, 0.69) 0.24 (0.16, 0.37) 0.77 (0.65, 0.91) 0.22 (0.08, 0.34)
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proportions of variability due to polygenic effect and
environmental effect at the age of 30 years along with
their crude estimates. The models show similar results
except for slight differences for cholesterol. This is

due to the missing data for cholesterol. It is our
observation that the convergence was faster with
model (3) when there were missing data for pheno-
types. For all the phenotypes considered, the
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Fig. 2. Posterior median (middle curves) and 95% credible intervals (upper and lower curves) of the proportion of total
variation due to polygenic and shared environmental sources for various phenotypes using models with 0.5 as the constant
degree of genetic relationship (2) and when the degree of genetic relationship is random (3). (a) Height – polygenic,
(b) height – environmental, (c) weight – polygenic, (d) weight – environmental, (e) systolic blood pressure – polygenic,
( f ) systolic blood pressure – environmental, (g) total serum cholesterol – polygenic and (h) total serum
cholesterol – environmental. The 2.5% limit, median and the 97.5% limit are denoted by square, polygon and triangle
symbols, respectively, for model (2) and by star, cross and polygon symbols, respectively, for model (3). The vertical line
corresponds to the age limit of 65 in the data.

S. Kulathinal et al. 274



variation due to the shared environment is less com-
pared to the polygenic and residual variability. This is
because the environmental variation is not simply se

2

but with a multiplier Di. The latter are rather close
for height and weight, while polygenic variability is
higher than the residual variability for systolic blood
pressure and cholesterol.

Figures 2(a)–(h) show the posterior median and
95% credible intervals for the proportions vg(age)
and ve(age) for different phenotypes and for different
values of age. The curves due to the two models are
overlapping in most cases. It is clear from Figure 3(a),
which shows the posterior medians of vg(age), that
the trend in the proportion is similar between weight,
systolic blood pressure and cholesterol, while for
height there is sudden decrease with age. This is be-
cause participants reach their maximal height in
early adult life and from then onwards there is no
further growth. Till age 20, the proportion of total
variability due to polygenic effect is higher in systolic
blood pressure compared to weight, but after the age
of 30 the trend reverses. Similarly, ve(age) are shown
in Figure 3(b) where height behaves differently com-
pared to other three phenotypes. We also carried out
the analysis using log-transformation for height and
the proportions of total variations due to polygenic
and environmental effects were close to the results
obtained without log-transformation.

The posterior median and 95% credible intervals
are given for some of the regression parameters in
Table 3. Only the sex effect is seen on height with
men tending to be taller than women. Body weight is
affected by age and sex. With age, body weight in-
creases and men have a higher weight compared to
women. A similar trend is seen for systolic blood
pressure with respect to age and sex. The regression
coefficient of sex is negative for cholesterol, indicating
that women have higher cholesterol compared to
men.

5. Discussion

The household data with a typical structure of a
married couple and their siblings are analysed so that
the built-in dependency structure is used in specifying
the variance–covariance structure. The dependency
structure allows separation of overall variability into
polygenic and shared environmental components.
Like McGregor et al. (2003), our analysis represents
multivariate analysis of heritability in the sense that
all age strata are analysed jointly compared to age-
stratified heritability estimation (Brown et al., 2003).
In our analyses, a general model that does not take
into account the dependency structure but allows any
positive definite Si showed weak association between
the observations (yi1, yi4), which may indicate a small
amount of assortative mating present among the
study subjects. In the proposed model, we assume that
these two individuals are neither related nor have
lived in the same household and the variability is
directly proportional to the number of years lived in
the same household. This reflects our understanding
of how environmental exposures operate.

The model used in this paper is the first possible
simplest model for the sibling pairs and spouse pairs
association separating environmental and genetic
variations. The unexplained variation is expressed
in terms of the residual variance sm

2 . A more complex
model allowing different dependencies between the
sibling pairs and spouse pairs based on the age when
lived together and allowing covariate information like
socio-economic status (SES) influencing the traits/
phenotypes might describe the data better. One such
model could be developed under the assumption
that the environmental dependency is stronger if the
environment is shared early in life (that is, at a
younger age). For example, a more complex model-
ling that allows the effect of the shared environment
on the phenotypes to be larger in the initial years of
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Fig. 3. Posterior median of the proportion of total variation due to (a) polygenic and (b) shared environment sources for
various phenotypes when the degree of genetic relationship is random (cross, height; polygon, weight; triangle, total serum
cholesterol ; square, systolic blood pressure). The vertical line corresponds to the age limit of 65 in the data.
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life and to decrease with age could be carried out
using appropriate functions, for example exp {xlt).
The shared environment variance is then computed
as the area under the function with respect to the
Gaussian process. We may also need different models
for different traits since the proposed model gives
counter-intuitive results for height and the develop-
ment of phenotypes with age could be different.
The heritability obtained without adjusting for age
(Table 2, ṽg) is more comparable to the results re-
ported from the twin studies, but the age-adjusted
proportions are rather different. However, we must
remember that modelling polygenic and environ-
mental variations as time-dependent quantities is very
rare and we must not compare mere numbers in the
absolute sense. We think that the proposed approach
opens up methodological questions and provides
scope for further research in this area.

The estimates of heritability obtained here are
not directly comparable to the ones reported in the
literature. In the context of cholesterol, Mastropaolo
et al. (2001) pointed out that previous studies consist
of older children and adult twin pairs have indicated
environmental contribution to the variation of chol-
esterol among individuals of 7–68% in the popu-
lations evaluated. Our results are to be compared with
the previously reported results keeping this in mind.
In this paper, we defined heritability as a decreasing
function of age, where its value is decreasing at a rate
depending on the ratio of environmental and genetic
variances. Thus, it is not surprising that height seems
to be less genetic at age 100 than at age 20. However,
this trend may be more pronounced if the information
relevant to early life environment comes from siblings
who have less variability in trait and later-life infor-
mation comes more from spouses who will have
greater variability.

The proposed method allows a comparison of
various phenotypes between rural and urban areas by
incorporating an appropriately defined covariate
based on migration status. A more thorough analysis
focusing on the rural and urban comparisons would
be reported elsewhere since the main interest here is

in estimating the relative genetic and environmental
variations.

In summary, we have developed a model that uses
the dependency between sibling pairs and spouse pairs
to estimate the age-dependent proportions of total
variation that are due to polygenic and environmental
effects. Using the Bayesian approach, the variation of
IBD-sharing could be incorporated into the model
without using marker information and this is the first
time such an idea has been tried. The approximate
N(0.5, 0.0382) for IBD shared by siblings is prior
information based on genomewide analysis from
previous studies. The Bayesian method can sample
the realized IBD from the conditional posterior dis-
tribution. This explains why the variation of IBD can
be incorporated without using marker information.
This idea is novel and appears to be useful in separ-
ating the genetic from environmental variances. The
model would benefit from testing in populations who
have experienced different exposures. As pointed out
to us by the Editor, using spouse information to
quantify the common environmental variance may be
better than using the twin data because the twin data
are hard to collect, while spouse and sibling data are
easier to collect. We may have very large samples
for spouse–sibling data compared to the twin data.
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(x0.001, x0.0005) (0.14, 0.27) (0.60, 0.78) (0.85, 1.32)

Male 0.13 5.27 4.99 x3.19
(0.12, 0.14) (4.21, 6.36) (3.44, 6.58) (x7.09, 0.82)
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Appendix A: Rationale behind the covariance

structures

(i) Covariance structure of polygenic effects

Consider a single locus with s allele effects (g1,…, gs)
We assume that these are independent and identically
distributed normal variates with zero mean and vari-
ance sl

2. Let us suppose that the human genome
contains K such independent loci. Then Gi1 can be
expressed as the sum of the effects of the 2K alleles
transmitted by parents and let this begK

k=1 (g
1
i1k
+g2

i1k
):

Similarly, let Gi3=gK

k=1 (g
1
i3k
+g2

i3k
) be the genetic

effect for a sibling of i1. It is easy to check that for
j=1, 3,

The conditional distribution of (Gi1, Gi3) is the normal
distribution with mean and covariance structure as
specified above. The shared genome between the sib-
ling pair is the proportion of IBDgenes actually shared
by them. The value 0.5 was originally obtained as an
asymptotic limiting value by assuming infinite genome
length. As stated in Xu (2006), the actual amount of
IBD-sharing between human full siblings is not a
constant but a variable with expectation equal to 0.5
and variance (0.0384)2. Here, the variance is specified
by the length of the human genome. Hence, in our
model, we allow the covariance between the polygenic

effects of full siblings ij and ijk to vary by a factor ci( j,
jk)s[0, 1] with mean 0.5 and variance (0.0384)2. For
simplicity, during estimation we have assumed that
ci( j, jk) has a normal distribution with mean 0.5 and
variance (0.0384)2.

(ii) Covariance structure of environmental effects

Under the assumption that the environment changes
over time, we define

Eij=g
l

Z 1

0
f(a(s))Iij(s; l)dWijl(s),

where a(s) is the age at time s, f(a(s)) is a positive,
monotone nonincreasing function of the age a(s), Iij(s ;
l) is an indicator function assuming the value 1 if
the individuals i and j have lived together at location l
at time s and is zero otherwise, {Wijl(s), ss[0, ‘]} is a
Gaussian process, with expected value E(Wijl(s))=0
for all (i, j, l) and s and covariance function
cov (Wijl(s1), Wijkl(s2))=se

2 min (s1,s2) and cov (Wijl(s1),
Wikjklk(s2))=0, if ilik, lllk. Here, we take f(a(s))=1 but
a more general function describing the model assump-

tion of stronger environment if shared at younger ages
can be modelled using, for example, exp {xla(s)} for
l>0.

The variance–covariance matrix is then

Sei(j, jk)=cov(Eij,Eijk)

=g
l

Z 1

0
Iij(s; l)Iijk(s; l)dhWijl(s),Wijkl(s)i

=s2
e g

l

Dl
i(j, jk),

where Di
l( j, jk) is time spent together by ( j, jk) at the

location l.

E(Gijjparents)=0=E(Gij),

var(Gijjparents)=2Ks2
l=s2

g=var(Gij),

cov(Gi1,Gi3jparents)=(number of alleles shared between i1 and i3)s2
l

=(shared genome between i1 and i3)s2
g:
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Appendix B: OpenBUGS code for analysing the proposed model

model

{

for( i in 1: N ) {

Y[i, 1:4] ~ dmnorm(mu[i, 1:4], T_m[i,1:4,1:4])

for(j in 1:4) {

mu[i, j] <- beta[1] + beta[2] � x1[i,j] + beta[3] � x2[i,j]

+ beta[4] � equals(x3[i,j],1) + beta[5]

� equals(x3[i,j],2) + beta[6] � equals(x3[i,j],3)

} # x1=age, x2=sex, x3=type of migration

}

for (i in 1:N) {

T_m[i,1:4, 1:4] <- inverse (S_m[i,1:4,1:4])

# Uncomment following to use constant factor

# c13[i] <- 0.5

# c24[i] <- 0.5

# D is the duration matrix

S_m[i,1,1] <- sigma_g2 + sigma_m2 + sigma_e2�D[4�i-3,1]
S_m[i,1,2] <- sigma_e2�D[4�i-3,2]
S_m[i,1,3] <- sigma_g2�c13[i] + sigma_e2�D[4�i-3,3]
S_m[i,1,4] <- sigma_e2�D[4�i-3,4]
S_m[i,2,1] <- sigma_e2�D[4�i-3+1,1]

S_m[i,2,2] <- sigma_g2+sigma_m2+sigma_e2�D[4�i-3+1,2]

S_m[i,2,3] <- sigma_e2�D[4�i-3+1,3]

S_m[i,2,4] <- sigma_g2�c24[i] + sigma_e2�D[4�i-3+1,4]

S_m[i,3,1] <- sigma_g2�c13[i] + sigma_e2�D[4�i-3+2,1]

S_m[i,3,2] <- sigma_e2�D[4�i-3+2,2]

S_m[i,3,3] <- sigma_g2+sigma_m2+sigma_e2�D[4�i-3+2,3]

S_m[i,3,4] <- sigma_e2�D[4�i-3+2,4]

S_m[i,4,1] <- sigma_e2�D[4�i-3+3,1]

S_m[i,4,2] <- sigma_g2�c24[i] + sigma_e2�D[4�i-3+3,2]

S_m[i,4,3] <- sigma_e2�D[4�i-3+3,3]

S_m[i,4,4] <- sigma_g2 + sigma_m2 + sigma_e2�D[4�i-3+3,4]

}

for( i in 1: N ) {

c13[i] ~ dnorm(0.5, tau)

c24[i] ~ dnorm(0.5, tau)

}

tau <- 1/(0.0384�0.0384)

for (j in 1: 6) {

beta[j] ~ dnorm(0.0, 0.0001)

}

tau_m2 ~ dgamma(0.01,0.01)

sigma_m2 <- 1 / tau_m2

tau_g2 ~ dgamma(0.01,0.01)

sigma_g2 <- 1 / tau_g2

tau_e2 ~ dgamma(0.01, 0.01)

sigma_e2 <- 1 / tau_e2

}
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